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a b s t r a c t

In this paper we analyze the strong sales dip observed in the manufacturing industry at the end of 2008,
following the bankruptcy of Lehman Brothers and the subsequent collapse of the financial world. We
suggest that firms' desire to retain liquidity during these times prompted a reaction characterized by the
reduction of working capital, which materialized as a synchronized reduction in target inventory levels
across industries. We hypothesize that such a reaction effectively acted as an endogenous shock to
supply chains, ultimately resulting in the bullwhip-effect kind of demand dynamics observed. To test this
proposition we develop a system dynamics model that explicitly takes into account structural,
operational, and behavioral parameters of supply chains aggregated at an echelon level. We calibrate
the model for use in 4 different business units of a major chemical company in the Netherlands, all
situated 4–5 levels upstream from consumer demands in their respective supply chains. We show that
the model gives a very good historical fit of the sales developments during the period following the
Lehman collapse. We test the model's robustness to behavioral parameter estimation errors through
sensitivity analysis, and the de-stocking hypothesis against an alternative model. Finally, we observe that
the empirical data is aligned with experimental observations regarding human behavioral mechanisms
concerning target adjustment times.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The world economy experienced a severe, sudden, and syn-
chronized collapse in late 2008. The magnitude of the drop in
global trade was the largest since World War II, it was the steepest
in recorded history, and it was synchronized: all 104 nations
where data is collected by the WTO experienced a drop in imports
and exports during the second half of the year (Baldwin, 2009).
Following the public collapse of the financial system (starting with
the Lehman Brothers bankruptcy in September 2008), firms all
over the world observed substantial demand disruptions; sales
plummeted across the board, and panic spread. While many
consumer markets remained relatively stable (exceptions being
consumer durables and capital goods), the manufacturing sector
observed almost instantaneous demand drops (Dooley et al.,
2010).

In crises such as these, managers are pressured to improve the
financial position of the company at the same time that demand
levels are dropping dramatically. This typically leads to strategic

decisions such as reducing inventories (to reduce the level of
working capital), downsizing (to reduce operational expenses),
and closing manufacturing facilities (to reduce fixed assets). These
decisions, however, have substantial operational consequences
when demand increases at a later stage: the reduction of inventory
levels, workforce, and manufacturing facilities are decisions that
require significant time to be reversed. If the situation that
triggered such decisions is temporary and demand recovers faster
than the speed at which firms can react, lost sales and general
problems with inventory management will appear. Knowledge
about the underlying dynamics behind the demand slump is
therefore needed to avoid costly mistakes.

These underlying operational dynamics are a focus of extensive
study as part of the systems-thinking approach introduced by
Forrester (1958). This approach centers on the use of System
Dynamics as the preferred methodology to replicate and under-
stand the dynamic behavior of complex systems. System Dynamics
models explicitly simulate the behavior of individual components
pursuing local results, and exploit the structure of the system to
model the interactions between these components. In doing so,
System Dynamics allows the modeler to decouple endogenous,
exogenous, and structural effects.

With regard to supply chain dynamics, observations are gen-
erally made that (a) production variance tends to be greater than
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demand variance, and (b) that this difference increases the further
upstream a firm is. This has the effect of greatly amplifying
demand fluctuations through a supply chain, and has been termed
‘the bullwhip effect’ (Lee et al., 1997a). Analytical studies quantify
this effect (Chen et al., 2000); empirical studies show evidence of
its existence at a firm level (Metters, 1997; Fransoo and Wouters,
2000; Bray and Mendelson, 2012); and a substantial experimental
body of work investigates its causes and possible solutions
(Sterman, 1989; Croson and Donohue, 2006). Empirical evidence
of the bullwhip effect at higher aggregation levels is, however,
ambiguous: conclusive evidence of neither variance amplification
nor production smoothing has been found in public manufacturing
data (see Cachon et al., 2007, for a study based on U.S data). This
apparent incompatibility between the predictions of the theory—
supported by experimentation– and high-level observations is,
however, explained by the effects of data aggregation. Chen and
Lee (2012) show that both product aggregation (whereby multiple
items are grouped into categories), and temporal aggregation
(whereby information is grouped into quarters) mask the magni-
tude of the bullwhip effect.

In this paper, we argue that firms reacted to the 2008 financial
crisis by reducing their working capital targets and, because it
was global and synchronized, this reaction introduced a signifi-
cant shock in the world's supply chains—essentially creating an
inventory-driven bullwhip effect. To test our hypothesis, we
adopt supply chain modeling, experimentation, and validation
methods based on theory from the experimental work by
Sterman (1989) and Croson and Donohue (2006)—originally
focused on the appearance of the bullwhip effect following
demand shocks in a laboratory setting. We develop 4 different
supply chain models for a major chemical company in the
Netherlands and validate them with demand data from the crisis
period. In terms of methodology, our work distinguishes itself
from previous studies on inventory dynamics by using extensive
empirical data, framing the Lehman Brothers collapse as a natural
experiment. We specifically distinguish between the direct esti-
mation of the operational model parameters, such as lead times,
and the econometric fitting of behavioral parameters, such as
stock adjustment times. In terms of theory, we model aggregates
of companies at a particular level of the supply chain in a
particular region rather than individual decision makers (as is
common in experiments) or firms (as is common in much of the
system dynamics literature in supply chain management). The
crisis time-frame, through the resulting synchronization in man-
agerial objectives, gives us the opportunity to link aggregate and
individual human behaviors.

We show that the combination of declining end-markets and
the appearance of a synchronized inventory shock successfully
account for a significant portion of the observed long and short
term dynamics. Moreover, to increase our confidence in the de-
stocking hypothesis, we present an alternative model without the
explicit inventory adjustment reaction to the crisis. Our results
show that demand drops in the respective end markets were not
severe enough to explain by themselves the wild dynamics
observed upstream.

In this view, exogenous end-markets drive the overall long-
term evolution of sales, while endogenous behavior (such as the
inventory decisions taken as a consequence of the crisis) primarily
impacts the short term dynamics.

The contribution of this paper to the theory is thus threefold:
(1) We identify the 2008 financial crisis as a natural experiment
that effectively controls for the masking effects of aggregation.
This allows for the usage of a system dynamics framework based
on the bullwhip effect literature whereupon we model aggre-
gate echelons. (2) We introduce a de-stocking hypothesis capable
of explaining the demand evolution observed by upstream

companies following the bankruptcy of Lehman Brothers. (3) We
identify the importance of both consumer end-markets and
ordering behavior in the evolution of demand patterns through
time. By explicitly modeling separate structural, operational, and
behavioral parameters, this study quantifies their contribution to
the observed transient behavior and allows for a comparison with
results obtained from experimental studies on individual human
decision making.

By explicitly modeling the impact of the sudden reduction of
inventory targets throughout the supply chain, we highlight the
impact that locally rational policies can have on overall supply
chain performance. From a managerial perspective, we display the
value of supply chain models that propagate end-market, and
endogenous, dynamics up a supply chain. Whereas an upstream
firm cannot avoid the bullwhip-like dynamics that follow shocks
of the magnitude of those observed after the onset of the 2008
financial crisis, it can use turning-point forecasts to support
strategic decisions.

The remainder of this paper is organized as follows: In Section 2
we introduce several inventory puzzles present in the economics
literature, use these to identify the challenges inherent in the
study of inventories as part of aggregate models, and develop our
de-stocking hypothesis. Section 3 introduces the methodology
and model formulation. We extend prior experimental work and
frame our models in the crisis time-period by explicitly modeling
the managerial decisions behind the hypothesized reduction of
inventory targets at an echelon level. In Section 4, we extend the
echelon models to four different supply chains, and use empirical
data to calibrate and validate these. We then formulate alter-
native models—without the de-stocking hypothesis—to study the
appropriateness of this hypothesis. We conclude in Section 5
with a series of managerial insights.

2. Background and hypothesis development

When looking at the link between inventories and macro
economic developments, Blinder and Maccini (1991) point out
that interest in inventory behavior seems to follow cycles, not
unlike the economy we attempt to explain. Indeed, we observe
that research on the role of inventories in the economy peaks
throughout history following extraordinary economic happenings
such as the post-war period, the late seventies oil crisis, and—
relevant to current developments—the financial crisis of 2008.

We refer the reader to Fitzgerald (1997) and Blinder and
Maccini (1991) for comprehensive reviews of over 50 years of
discussions on inventory theory in the economics discipline and
the puzzles they attempt to solve. In his work, Fitzgerald (1997)
identifies inconsistencies between theory and data, and the sub-
sequent attempts of researchers to eliminate these discrepancies
from their models. Blinder and Maccini (1991) summarize the
opposing views of micro and macro economists with regard to the
role of inventories: the former discipline sees them as a stabilizing
factor, whereas the latter sees them as a de-stabilizing one.
Despite these fundamental disagreements, Feldstein and
Auerbach (1976) point out, inventory fluctuations have long been
recognized as a major endogenous force in American business
cycles. In their experience, irrespective of the conceptual contra-
dictions between contemporary models and the real-life processes
behind them, most studies of inventory behavior note that about
75% of the cyclical downturn in gross national product (from peak
to trough) can be accounted for by the reduction of business
inventories. Recognizing these conceptual difficulties, Lovell
(1994) reflects upon the inherent challenge of trying to reconcile
these views. He poses a series of questions that—for all the body of
research available—remain open to this day: “(…) Do firms actually
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attempt to smooth production? Is an empirical analysis of
industry-level data enough? Is it necessary to analyze firm-level
data in order to explain these effects?” These questions read as a
research agenda on the mechanisms behind empirical observa-
tions on both macro and micro levels, recognizing, among other
issues, the potential masking effects of aggregate data. In the
operations management literature, inventory theory is often
developed in a stylized manner; with strong assumptions that
favor mathematical tractability over the inclusion of the myriad
factors that are present in real life. The objective of these
simplifications is to develop managerial insights that are both
rigorous, and useful in the real world. In an exploratory study,
Rumyantsev and Netessine (2007) find evidence that many
insights from classical inventory models survive aggregation and
do, in fact, hold up when analyzing empirical data.

The dynamics that stem from the interactions of subsequent
echelons along a supply chain have been extensively studied in the
operations management literature. The fact that relatively small
shocks can introduce severe instabilities in entire systems was
shown by Forrester (1958), and is a central idea behind the
bullwhip effect. The bullwhip effect has long been analytically
and experimentally understood, and its effects and causes have
sparked a great amount of research that has delivered valuable
managerial insights (Sterman, 1989; Lee et al., 1997b; Croson and
Donohue, 2006). This research spans a wide range of methodol-
ogies, where the term bullwhip is used to describe a wide range of
bullwhip-like phenomena in contexts beyond the formal defini-
tion of the classical causes and structural assumptions of the
bullwhip effect (see, for example, Lee et al., 2014, for a description
of the “green bullwhip”). The work reported in this study is
consistent with this wider perspective on bullwhip phenomena.
Even though the bullwhip effect itself is significant at the firm
level (Metters, 1997; Fransoo and Wouters, 2000; Bray and
Mendelson, 2012), attempts to empirically quantify the effect at
higher aggregation levels have not been successful: studies have
failed to prove it statistically significant at an industry level
(Cachon et al., 2007; Bu et al., 2011). The lack of clear empirical
evidence is attributed to the influence of factors present in
government statistics such as their high level of aggregation
(Chen and Lee, 2012), and seasonal adjustment (Gorman and
Brannon, 2000). Furthermore, as Rumyantsev and Netessine
(2007) point out, extending many structural properties from
single-product, single-echelon models to higher aggregation levels

also requires the assumption that products be homogeneous and
their inventory control be synchronized.

With this in mind, the financial crisis of 2008 allows us to study
empirical data in a different way. Following the bankruptcy of
Lehman Brothers on September 2008, the financial world found
itself in turmoil; credit dried up almost instantly and many
companies in the world shifted their financial priorities according
to the “cash is king” motto: liquidity became essential. Freeing up
cash in the short term through inventory divestment is one
strategy that can be followed by companies in times of distress
(Sudarsanam and Lai, 2001). In a recent work, Pesch and Hoberg
(2013) conduct an empirical study that shows that firms in
financial distress reduce their inventories as part of their turn-
around strategy: 70% of the firms in their sample reduce their
inventories, with a median reduction of 9.4% of all inventories. We
hypothesize that firms all over the world reacted to the financial
collapse by significantly reducing their inventory targets. This,
combined with the extraordinary synchronization observed dur-
ing the period (Alessandria et al., 2010) and the ever increasing
influence of supply chain dynamics in the global economy (Escaith
et al., 2010), introduced a synchronized, endogenous, inventory
shock that generated an inventory-driven bullwhip effect. Early
studies following the financial crisis seem to confirm this view in
the manufacturing sector (Dooley et al., 2010). Using the collapse
as a natural experiment, we model supply chains at an aggregate-
echelon level, use exogenous end market data to drive those
models, and validate them with primary empirical data collected
at a major dutch chemical company.

3. Theoretical background and model structure

In this section, we present our echelon model based upon
Sterman's managerial decision making and supply chain models
(Sterman, 1989, 2000) and follow with an introduction to the de-
stocking logic we use to model the hypothesized reaction to the
credit crisis.

3.1. Echelon model

An echelon model consists of three decision areas (see Fig. 1):
the forecasting and orders sector tracks the incoming customer
orders, maintains the echelon sales forecast, and generates

Fig. 1. Overview of a modeled echelon.
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material orders. The production sector regulates inventories and
production, and the delivery sector keeps track of customer
deliveries and backlogs. The model assumes no lost sales, and is
based on continuous time system dynamics simulations. There is
no sequence of events as such; cause and effect relationships are
modeled by differential equations (i.e. we model rates of change),
and products are modeled as continuous flows (demand is an
outflow, incoming orders an inflow).

Because these echelon models are linked to one another
(deliveries from one echelon become material receipts for the
echelon immediately downstream in its supply chain), each of the
parameters we define has a subscript ½n¼ ð1;…;NÞ� that represents
its place in the supply chain. We number echelons from down-
stream to upstream: the most downstream echelon being 1 and the
most upstream N. In the case of diverging supply chains, where one
echelon can potentially have several direct customers, we introduce
a second index after a period, that indicates the existence of other
parallel echelons in the supply chain. Table 1 shows a summary of
all parameters and variables in the echelon model.

3.2. Forecasting

The forecasting sector maintains a sales forecast by accumulat-
ing the differences between the incoming customer demand
ðOn�1Þ and the previous forecast (Fn). When demand exceeds the
forecast it is updated upwards and vice-versa. To allow for a
smoothing of the forecast, these differences are divided by the
forecast adjustment time ðτnðFÞÞ, indicating whether the whole
difference or only a fraction is taken into account.

d
dt

� �
Fn ¼

On�1�Fn
τnðFÞ

: ð1Þ

3.3. Production

The production sector models the flow of material through the
echelon. The incoming material rate (An) is equal to the delivery
rate of the immediately upstream echelon ðDnþ1Þ,
An ¼Dnþ1: ð2Þ
The supply line is the cumulative difference between orders placed
and orders received,

d
dt

� �
SLn ¼ On�An: ð3Þ

Incoming material is stored as work in process (Wn). In the interest
of simplicity we do not model any production release rule. Thus, the
work in process stock is not used strategically or as a control
variable: all incoming material is committed to production, and the
production rate is modeled by applying a fixed delay (equal to the
production time PTn) to the order arrival rate. System dynamics
modeling allows for the introduction of this discrete step in the
model, which approximates the real production process,

Pn ¼DELAYðAn; PTnÞ: ð4Þ
Eq. (4) assumes a production model where the manufacturing time
is independent of the utilization rate, it also implicitly assumes that
there are no capacity limitations for production (the model can be
straightforwardly extended to include capacity limitations).

On -hand inventory (Sn) depends on the delivery rate (Dn) and
the production rate (Pn),

d
dt

� �
Sn ¼ Pn�Dn: ð5Þ

Material orders are based on an anchor and adjustment heuristic
(Tversky and Kahneman, 1974): the sales forecast acts as the

anchor, with the adjustment stemming from the difference
between actual and target stock (and supply pipeline) levels.

To calculate the target stock, we start with the desired on hand
inventory coverage measured in time units ðĈ nÞ. When this is
multiplied by the sales forecast, we obtain the desired on hand
stock ðŜnÞ in units of product.

Ŝn ¼ Ĉ nFn: ð6Þ
Analogously, there is a supply line level ðŜLnÞ consisting of the
multiplication of the lag (lead time) and the forecasted volumes,

ŜLn ¼ Fn Lnð Þ: ð7Þ

3.4. Orders

Once we have calculated the desired levels of on-hand and
supply line inventories, we generate adjustment orders with the
purpose of closing the gap between the actual values of these
inventories, and their desired (target) levels. The inventory adjust-
ment time ðτnðSÞÞ and supply line adjustment time ðτnðSLÞÞ repre-
sent the time allowed for these quantities to reach the desired
levels. These adjustment times model the behavioral aspect of the
order generation. Short times imply a nervous buying behavior
whereas a long adjusting time is equivalent to a smooth ordering
strategy. We define the stock adjustment orders ðOnðSÞÞ and supply
line adjustment orders ðOnðSLÞÞ as

OnðSÞ ¼
Ŝn�Sn
τnðSÞ

; ð8Þ

OnðSLÞ ¼ ŜLn�SLn
τnðSLÞ

: ð9Þ

Eqs. (10) and (9) calculate the difference between desired and
actual values and spread these in equal parts over the amount of
periods specified by the adjustment times. Finally, generated
orders (On) are calculated as

On ¼max f0; FnþOnðSÞþOnðSLÞg: ð10Þ

3.5. Delivery

A backlog is used to keep track of orders. The backlog is
calculated as the cumulative difference between the incoming
customer order rate On�1 and actual delivery rate (Dn). O0, the
demand observed by the echelon closest to the end market, is the
only exogenous input to the model 1,

d
dt

� �
Bn ¼ On�1�Dn: ð11Þ

The order delivery rate (Dn) is the rate of product that is actually
shipped out in response to the incoming customer orders. To calculate
this, we first define the desired delivery rate ðD̂Þ, which is equal to the
current backlog divided by the expected delivery delay ðτnðLÞÞ,

D̂n ¼
Bn

τnðLÞ
: ð12Þ

The maximum delivery rate ðmaxðDÞnÞ per period depends on the
ability of firm to physically prepare the products for shipment,
modeled as the minimum time to fill orders ðτnðIÞÞ,

maxðDÞn ¼
Sn
τnðIÞ

: ð13Þ

We calculate the delivery ratio (Rn) as the proportion of outstanding
orders that can be shipped from stock,

Rn ¼min 1;
maxðDÞn

D̂n

� �
: ð14Þ
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Finally, the actual order fulfillment rate is equal to the desired delivery
rate multiplied by the delivery ratio,

Dn ¼ D̂nRn: ð15Þ
Alternatively, we can combine Eqs. (13)–(16) and define the order
fulfillment rate as

Dn ¼min
Bn

τnðLÞ
;
Sn
τnðIÞ

� �
: ð16Þ

3.6. Modeling de-stocking decisions

We model de-stocking decisions by decreasing the desired
inventory coverage ðĈn Þ of an echelon n at time T by a fraction
dn (with 0rdno1).

Thus, we can define Ĉ n as

Ĉ n ¼
Ĉn if toT;
ð1�dnÞĈn if tZT:

(
ð17Þ

where Cn is the desired stock coverage in “normal” (non-crisis)
situations. It is important to note that de-stocking is a decision to
lower target stock levels that are measured in time units. It is not
a decision to reduce its absolute value, nor does it imply the
destruction or writing-off of inventory. In this way, we separate
explicit decisions to lower inventory targets from the implicit
reductions that come from a decrease in sales.

3.7. On the equivalence of the ordering policy

The model presented in this section is a straightforward
extension of the model found in Sterman (2000). In particular,
we introduce an explicit de-stocking decision and a discrete
production delay. The structure of this ordering policy, however,
is not unique to System Dynamics models, and can be found in
other branches of the literature.

In the behavioral operations literature, an equivalent rule is
used to model the decision-making behavior of human managers.
In this context, the model is presented based upon its equivalence
to an ‘anchor and adjustment heuristic’ (Tversky and Kahneman,
1974). These heuristics are used to describe human decision-
making biases: Orders are calculated by selecting an anchor (in
this case the forecast) with subsequent adjustments motivated by
deviations from the target stock and supply line levels (Sterman,
1989; Croson et al., 2014).

The control theoretic branch of inventory theory also uses a
family of models based on the same principles as the model
described in this paper. The more general of the models in this
framework, the Automatic Pipeline Variable Inventory Order-based
Production Control System (APVIOPCS), is a discrete-time, constant-
coverage, equivalent of our System Dynamics model. Linking this
framework with other branches of inventory theory, Dejonckheere
et al. (2003) show that these models are essentially modified Order
Up To (OUT) policies. In particular, when the supply line and stock
adjustments are taken fully into account every period then this
model is equivalent to an OUT policy with a safety lead time
proportional to the inventory coverage. The more general cases,
when the supply line and stock adjustments are not equal, nor are
they taken fully into account every period (as in this paper), can
thus be thought of smoothed variations of OUT policies—with the
key difference being that OUT policies have only one feedback loop,
for the inventory position (the sum of the on-hand stock and the
supply line). For a survey of the different policies explored in the
control theoretic literature, and a discussion on the implications of
independent supply line and stock adjustments, we refer the reader
to Ortega and Lin (2004) and Udenio et al. (2013).

4. Results and analysis

In this section, we use the echelon model as a building block to
construct, calibrate, and validate 4 different supply chain models
based upon data collected at our research company.

The methodology presented thus far concerns the modeling of
a single echelon in a supply chain: The input to an echelon model
is a customer order and its output is an order placed to a supplier.
To model a supply chain, we link echelon models according to the
customer/supplier relationships defined by its structure (e.g.
number of echelons, linear, divergent) and parameterize the
individual echelons. We run the supply chain models using end-
market sales data as their exogenous inputs.

Each of the echelon models is defined by operational and
behavioral parameters. Operational parameters posses a concrete
interpretation in the day-to-day operation of a firm (e.g. target
stocks and production times) and are thus set based upon expert
interviews. Behavioral parameters (e.g. supply line and stock
adjustment times), on the other hand, define the relationship
between internal variables—product of explicit or implicit man-
agerial decisions—and are thus estimated through a process of
model calibration. The de-stocking decisions we hypothesize,
however, do not fall squarely in either of these definitions. While
these decisions correspond to the operation of the firm, we could
find no hard evidence of the desired inventory reductions. Rather,
the de-stocking decisions corresponded to financial recommenda-
tions from upper management, which were estimated to be ‘on
the order of 10–20%’. Similarly, de-stocking decisions do not
conform to the definition of a behavioral characteristic of the
models. Thus, de-stocking is estimated via scenario analysis based
upon expert interviews: Feasible de-stocking quantities (from 5 to
30% reductions of desired stocks) are defined in discrete incre-
ments, the calibration is performed for each of these scenarios,
and the best fit is chosen. Potentially, the amount of de-stocking
could depend on a series of firm characteristics such as the type of
product and distance from the end market. However, due to the
limitations of our data, we can only quantify the cumulative effect
of de-stocking on the uppermost echelon. We therefore use a
single de-stocking parameter for each supply chain.

The rest of this section is divided as follows. We explain the
model set-up and data collection in Section 4.1. Then, we define
the structure of the modeled supply chains and the operational
parameters in Section 4.2, and the estimation of behavioral
parameters in Section 4.3. Finally, we study the historical fit of
the model in Section 4.4, and analyze an alternative model, where
the de-stocking hypothesis is suppressed, in Section 4.5.

4.1. Model set-up and data collection

Two distinct flows appear when we link individual echelon
models to form a supply chain model: An information flow that
travels upstream (orders), and a material flow that travels down-
stream (deliveries). The information flow of any supply chain
originates at the sales point of a finished product (i.e. its end-
market). Thus, the demand information observed by an upstream
entity is a function of the original signal, generated by the end-
market, and transformed—throughout its flow upstream—by the
subsequent echelons of the particular supply chain (in the case of
divergent supply chains, the combination of end-market signals).
We use the 2008 credit crisis as a natural experiment because it
allows us to link these end-market signals to the corresponding
upstream demand: The synchronization observed during the
period effectively controls for the smoothing effects of aggrega-
tion. Explicitly, we assume that (a) entities at a given echelon
share the same structure, (b) entities at a given echelon share the
same behavior during this time frame, and (c) the information
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distortion that is observed in the passage of demand information
upstream, from its origin in the end-market, corresponds to locally
rational policies at each stage of the supply chain (i.e. no demand
information is arbitrarily created or discarded by intermediate
echelons). We base this approach upon the observation that
empirical data shows that, during the credit crisis, turning points
in sales and inventories were indeed aligned by tiers, suggesting
synchronized behavior by stages (Dooley et al., 2010).

Conceptually, we model echelons that represent a group of
competing companies providing the same product to the same
supply chain. This follows what Sprague and Wacker (1996) define
as the modeling with a “disaggregation by stages along the
inventory stream”. They point out that management practice
generalizations made in this way recognize the impact of the
management of inventory as it progresses through the stages. In
particular, we model 4 different supply chains to which a dutch
chemical firm (where we collected primary data) belongs to. As a
reference, 4 different business units of this firm are situated 4–5
echelons upstream from retail demand in each of these supply
chains. The upstream products sold into these supply chains are
resins, thermoplastics, and polymers; the end-markets where
these can be found are shown in Table 2. Each individual supply
chain is defined by a “product family” of the upstream manufac-
turer. The aggregation level for each of these is defined by each
business unit and represents an aggregation level that is used for
medium-term decision making in each unit's Supply and Opera-
tions Planning (S&OP) procedures.1 SKU's in the given product
families generally only differ in the mix and quantity of the
component materials; characteristics such as production time,
safety stocks, and lead times are assumed to be equal.

We use monthly, EU27 sales data available from Eurostat as a
proxy for the demand for each of the end-markets. The series used
are: Construction index, automobile registrations, household

goods retail index, and production indexes for: food products
(C10), paper and paper products (C17), glass and glass products
(C23.1), basic metal and metal products (C24), and motor vehicles
(C29.1). All data is normalized with the average of 2007¼100. Due
to the continuous nature of the System Dynamics simulations, the
monthly frequency of the data is approximated to the numerical
integration step (daily) through a cubic spline interpolation. This
implicitly assumes continuous production, which is reasonable in
the context of process industries. The work at each of the four sites
of the company began with a kickoff meeting with management
where the objectives and scope of the study were explained and
defined. Following these, interviews were conducted with employ-
ees to formalize data collection procedures. The structure of the
supply chain model and the parameterization of operational
parameters is based on input from these employees, complemen-
ted with information obtained from players distributed along the
supply chain. The modeling work was performed on-site, which
allowed for additional ad-hoc interviews and further familiariza-
tion with the particulars of each individual supply chain.

4.2. Structure and operational parameters

The number of echelons, structure, and end markets of each of
the 4 supply chains are all different and can be seen in Fig. 2.
The supply chains in this study consist mainly of chemical firms
upstream and make-to-stock component suppliers downstream.
For further context, we present an appendix where we describe
the different stages of supply chain 3 in greater detail. For this
study, we consider our research site to be the upstream-most
boundary of each supply chain. The parameterization of the
operational parameters per echelon is shown in Table 3.

To simplify the models, we assume deterministic lead times
and the availability of resources such that order preparation does
not introduce significant lags. Thus, the expected delivery delay
ðτnðLÞÞ is equal to its own delivery lead time ðLn�1Þ, and the
minimum time to fill orders ðτnðIÞÞ is equal to 1. Due to the
absence of disaggregated data, the lead time is defined as the
time between placing an order and its receipt (i.e. it encompasses

Table 1
Definitions and sources of model parameters and variables.

Parameter/Variable Dimensions Source

Parameters
Ln Incoming delivery lead time at echelon n Weeks Set based on interviews
PTn Production time of echelon n Weeks Set based on interviews
τnðSLÞ Supply line adjustment time at echelon n Weeks Estimated to fit past data
τnðSÞ Stock adjustment time at echelon n Weeks Estimated to fit past data
τnðFÞ Forecast adjustment time at echelon n Weeks Estimated to fit past data
τnðLÞ Expected delivery delay at echelon n Weeks Set a fortiori and based on interviews
τnðLÞ Minimum time to fill orders at echelon n Weeks Set a fortiori and based on interviews

Ĉ n Desired on-hand inventory coverage at echelon n Weeks Set based on interviews

dn De-stocking fraction at echelon n Dimensionless Judgmentally set based on interviews

Variables
Sn On-hand stock at echelon n Units Endogenous
SLn Supply line at echelon n Units Endogenous
Wn Work in process stock at echelon n Units Endogenous
Pn Production rate of echelon n Units/Week Endogenous
Fn Sales forecast at echelon n Units Endogenous

D̂n Desired delivery rate echelon n Units/Week Endogenous

Ŝn Desired on-hand inventory at echelon n Units Endogenous

ŜLn Desired supply line at echelon n Units Endogenous

On(SL) Supply line adjustment of orders at echelon n Units Endogenous
On(S) Stock adjustment of orders at echelon n Units Endogenous
On Orders placed by echelon n Units Endogenous
Dn Delivery rate at echelon n Units/Week Endogenous
An Incoming material rate at echelon n Units/Week Endogenous
Rn Delivery ratio echelon n Units/Week Endogenous
Bn Backlog at echelon n Units Endogenous

1 Product families analyzed in this study are, among others, water-borne resins
used in the production of the paint used in a specific range of construction
products, and automotive-grade Ethylene Propylene Diene Monomer (EPDM)
rubber used in the manufacturing of engine hoses.
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both the informational and physical components of the delay). We
make two additional assumptions regarding the boundary condi-
tions: (1) Orders placed by the uppermost echelon in a supply
chain are always served by a supplier with infinite stock, and
(2) downstream demand is exogenous and composed of the
individual demand signals of the end markets that require the
materials produced upstream.

Having defined the structure and operational parameters for
each of the supply chain models, we proceed with the analysis of
the de-stocking decisions and the estimation of behavioral para-
meters through calibration.

4.3. Model calibration and behavioral parameters

Oliva (2003) defines model calibration as the process of
estimating parameters to obtain a match between modeled and
observed behavior and argues that it is, in itself, a stringent test of

the validity of the model linking structure and behavior. Never-
theless, he points out that achieving a good historical fit is not
enough to confirm the dynamic hypothesis behind the model; the
model has to match the observed behavior for the right reasons.
Partial model calibration, the process of estimating parameters
within a subset of model parameters instead of the entire model
parameter space, introduced by Homer (1983) is the preferred
calibration strategy for system dynamics models because it
“reduces the risk of the structure being forced into fitting the
data, increases the efficiency of the estimation (estimators with
smaller variances), and concentrates the differences between
observed and simulated behavior in the piece of structure respon-
sible for that behavior” (Oliva, 2003). However, we cannot perform
partial calibration for our supply chain models because we lack
primary sales and inventory data at the intermediate levels, and it
is not possible to map secondary empirical data to individual
echelons. To overcome this, we perform a full model calibration
and follow it with: (i) a sanity check of the estimated parameters
(is the model structure sound?) and (ii) the test of an alternative
hypothesis (can we achieve the same behavior through a different
structure?) to increase the confidence in our model.

We use the corresponding secondary EU27 end-market data as
the input for each of the end-markets in our models and primary

Table 2
Summary of end-markets served by the 4 modeled supply chains.

Supply chain End markets

Supply chain 1 (resins a) Residential and commercial construction;
residential and commercial repair &
maintenance.

Supply Chain 2 (resins b) Residential and commercial construction;
residential and commercial repair &
maintenance;
furniture sales.

Supply chain 3 (polymers) Automotive sales.

Supply Chain 4
(thermoplastics)

Automotive manufacturing; Glass panel
manufacturing;
metal manufacturing; Food manufacturing;
paper and pulp manufacturing;
residential and commercial construction.

Fig. 2. Supply chain structures. (a) Supply chain 1, (b) supply chain 2, (c) supply chain 3, and (d) supply chain 4.

Table 3
Operational Supply Chain parameters per echelon.

Supply chain 1 Supply chain 2 Supply chain 3 Supply chain 4

Ĉ Ln PTn Ĉ Ln PTn Ĉ Ln PTn Ĉ Ln PTn

1.1 5 10 1 1.1 8 4 1 1 4 3 1.5 1 8 0.25 2
1.2 5 10 1 1.2 4 4 1 2 2 1 1 2 14 0.25 5
2 8 2 1 1.3 4 4 1 3 1.5 2 1 3 10 0.25 4
3 8 2 1 2.1 8 4 1 4 1 2 1 4 8 0.25 1
4 4 2 1 3 8 0.25 1 5 2 2 1

4 3 0.25 1
5 2 0.25 1
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sales data from our research company as a proxy for upstream
demand. This assumption is reasonable all through the historical
period used for the calibration (where no capacity shortages were
observed). Due to the existence of only one exogenous time series
per supply chain, we use 27 months of historical data (Jan 2007–
Mar 2009) to calibrate the model, then freeze the model para-
meters and use further 24 months (Apr 2009–Mar 2011) to run
and validate the model. The calibration time period is selected so
that it includes the hypothesized de-stocking period. This step is
implemented within the simulation software; simulations are
performed for each supply chain by generating model runs where
all the operational parameters are fixed as established in Section 4.2,
while the behavioral parameters are varied. The cumulative sum of
squared errors between the estimated demand and the historical
sales data is calculated per run and the combination of parameters
that minimizes this error is then chosen. Formally, the minimization
corresponds to

min
τnðFÞ;τnðSLÞ;τnðSÞ

∑
k

t ¼ 1
ðON�1ðtÞ� ~DNðtÞÞ2: ð18Þ

where N is the most upstream echelon in the supply chain, and
~DNðtÞ is the historical sales data for time t at echelon N (our research
company). In other words, we compare the orders generated by the
modeled customers of our research site with the actual historical
sales of said firm and search for the parameter values that minimize
the error. The minimization is performed through a modified
Powell–Brent algorithm (Brent, 2002). For computational purposes
and to reduce the search space, τðSÞ, τðSLÞ, and τðFÞ are estimated
through their reciprocals, αS, αSL, and Θ (with αS, αSL;ΘA ½0;1�).
Table 4 lists all the parameters estimated through calibration,
including the 95% confidence intervals calculated through a sensi-
tivity analysis. The de-stocking fractions, estimated through a
combination of interviews and scenario analysis, are also shown
in this table.

In all cases, the confidence bounds of the estimations for the
uppermost echelon are lax: this is due to the data available for
calibration being the historical sales of this echelon. None of the
parameters in the model allow a firm to influence its own demand

via strategic decisions. Thus, the uppermost echelon can either
meet the demand or incur in destabilizing stock-outs. The con-
fidence bounds represent the parameter space that allows for the
former. Similarly, the amount of parameters being estimated from
a single time series (between 12 and 21, depending on the supply
chain) explain the size of the confidence intervals of the supply
line adjustment time, which are particularly large. A parameter
estimated to be 1 corresponds to a parameter that is not taken
into account in the ordering heuristic. The upper bound for the
supply line adjustment time for all but two of the echelons is 1,
which suggests that we cannot reject the hypothesis that firms
completely ignore the supply line. On the other hand, the lower
bound for 2/3 of the echelons is larger than one, which suggests
smoothing of the supply line adjustment.

This is consistent with results from experiments found in the
behavioral literature (Sterman, 1989). The gap between desired
and actual supply lines is severely underestimated in the ordering
decisions: both the means and medians of the supply line adjust-
ment time ðτðSLÞÞ are larger than the respective values for the stock
adjustment times (two-sample t-tests on the means, Wilcoxon
rank-sum tests for the medians, all pr0:01) as well as the values
for the forecast adjustment time (pr0:1 when comparing means
and pr0:01 when comparing medians).

When we compare the stock and forecast adjustment times, on
the other hand, we find no statistical difference between neither
their means nor their medians—suggesting a smoothing of the
same order of magnitude for the adjustment of the inventory gap
and the forecast updating.

We next compare the adjustment times between the different
supply chains to test for any differences in the inherent behavior.
We find no significant difference among the different supply
chains, implying that the overall behavior, and the mechanisms,
behind all the models is comparable.

4.4. Historical fit and structural validity

Following the calibration, we run the four supply chain models
driven by the exogenous end-market and the de-stocking

Table 4
Estimated behavioral parameters and de-stocking fractions.

Echelon τðSÞ 95% CI τðSLÞ 95% CI τðFÞ 95% CI

Supply chain 1 ðdn ¼ 0:15Þ
1.1 3.65 2.17 6.39 5.51 2.17 15.07 6.25 1.00 29.53
1.2 9.49 4.42 14.46 1 24.46 1 1 120.39 1
2 9.19 7.59 11.38 1 7.59 1 8.81 5.63 14.88
3 13.70 11.86 15.97 1 11.86 1 21.75 16.54 29.12
4 10.00 1.30 1 60.25 1.30 1 10.00 1.00 2561.69

Supply chain 2 ðdn ¼ 0:25Þ
1.1 4.39 3.20 5.71 1 7.83 1 3.91 1.00 17.71
1.2 25.62 1.00 1 1 1.00 1 110.74 1.00 1
1.3 540.86 159.26 1 901,432.01 79.63 1 1 204.94 1
2.1 5.44 2.81 7.80 2.72 1.40 6.28 5.02 2.22 7.77
3 8.16 6.67 10.01 81.62 3.34 1 14.11 10.01 20.57
4 31.84 23.89 44.31 76100.78 11.95 1 8.60 6.86 10.76
5 10.00 1.00 72.52 100.00 1.00 1 10.00 1.00 49.93

Supply chain 3 ðdn ¼ 0:20Þ
1 12.97 10.61 15.87 1 11.02 1 1377.31 124.29 1
2 3.11 1.78 5.04 10.80 1.88 1 1.00 1.00 16.04
3 9.21 7.81 11.02 1 37.13 1 13.27 8.40 21.96
4 12.09 9.42 16.04 1 10.09 1 11.52 8.47 16.01
5 10.00 1.00 1 60.25 1.00 1 6.03 1.00 1

Supply chain 4 ðdn ¼ 0:10Þ
1 14.55 12.11 17.45 16.28 6.06 1 1 399.02 1
2 8.63 7.27 10.23 37,643.27 15.08 1 16.15 10.55 24.47
3 11.23 9.33 13.57 1 19.70 1 8.63 5.90 12.26
4 16.88 1.00 445.38 56.67 0.50 1 1011.40 1.00 1
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hypothesis. To validate the models, we compare the actual sales
realizations of the upstream-most echelon of each of the supply
chains with the corresponding modeled demand. Fig. 3 shows the
model outputs against the seasonally corrected upstream demand
realizations.2 The vertical axis represents the demand expressed in
% of the average 2007 demand and the dotted vertical lines
indicate the threshold for the calibration period. Table 5 shows
the root mean squared error (RMSE), R2, and Theil inequality
statistics for the data series shown in the figure. These inequality
statistics decompose the mean square error into three fractions
representing: unequal means (Um), unequal variances (Us), and
imperfect correlation (Uc) (Theil, 1966). A low Um indicates a
strong correspondence between the modeled mean and the actual
mean, and a low Us indicates a similar correspondence between
variances. Therefore, low variance and means statistics indicate
that the error is unsystematic, and therefore desirable (Oliva and
Sterman, 2001).

The models, driven by one exogenous data series (end custo-
mer demand), and the de-stocking policy (desired stock reductions
in September 2008) show good tracking of the overall bullwhip-
like behavior of the system. The low RMSE values, combined with
the unsystematic nature of the errors for all four data series
increase the confidence in the model, and hence in the underlying
de-stocking hypothesis.

However, a match between observed and simulated behavior is
not in itself enough to accept the model and hypothesis. As Oliva
(2003) explains, “There is a chance that a set of parameter values
might be capable of replicating the observed behavior through a
set of unrealistic formulations, and thus generate the right
behavior for the wrong reasons”. To test the validity of the model,
we need to analyze what the estimated parameters say about its
structure, and follow this up with an analysis of an alternative

model to test whether the same behavior can be achieved through
a different structure.

As mentioned in Section 4.3, the large confidence bounds for
the supply line adjustment time, coupled with the statistically
significant underestimation of the supply line ðτðSLÞ4τðSÞÞ are
consistent with findings from the behavioral operations literature.
In this (mainly) experimental body of work, individual human
behavior is analyzed in the context of the beer distribution game.
Three of the most salient such studies are Sterman (1989), Croson
and Donohue (2006), and Croson et al. (2014). In these experi-
ments, students (and professionals) play the beer game under
different settings, and their behavior is estimated through the use
of regression analysis on a decision rule equivalent to Eq. (10).
These studies consistently report underestimation of the pipeline
and a smoothing of both the forecast and stock adjustment times.
The fact that these characteristics are observed in the behavioral
parameters of our calibrated models increases our confidence on
its structural validity—the behavior of the models is consistent
with prior research.

4.5. Alternative model

The de-stocking hypothesis presented in this paper is moti-
vated by a variety of results from the inventory management and
economics literature. It has been shown that firms can convert
assets into cash in the short-term (Sudarsanam and Lai, 2001), and
that lowering inventories is a common response to financial
distress (Pesch and Hoberg, 2013). Furthermore, studies focused

Fig. 3. Model output vs. seasonally corrected sales data. (a) Supply chain 1, (b) supply chain 2, (c) supply chain 3, and (d) supply chain 4.

Table 5
Historical fit statistics.

Model RMSE (%) R2 Um Us Uc

Supply chain 1 4.85 0.60 0.041 0.226 0.733
Supply chain 2 5.70 0.84 0.025 0.087 0.888
Supply chain 3 7.39 0.84 0.020 0.101 0.879
Supply chain 4 9.86 0.82 0.001 0.051 0.948

2 Note that the time series for actual sales in supply chain 1 has an extra year of
data available. This corresponds to the nature of the collaboration agreements,
which where negotiated independently with each of the different business units.
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on the mechanisms behind the recent 2008 financial crisis have
reported on its extraordinary magnitude and synchronization
(Alessandria et al., 2010). In line with this, anecdotal evidence
points to decisions having been made to reduce working capital:
formal and informal interviews with decision makers across the
industry support this view.

However, the empirical validation of our hypothesis not possi-
ble: Inventory targets are not explicitly reported, and we cannot
use actual inventories as a proxy for inventory targets during the
time-frame of this study. The decision to reduce inventory targets
triggers a shock that immediately affects orders, but its effect on
inventory levels is substantially more complex: The combination
of time delays and declining demand caused inventory levels to
spike following the start of the crisis, further increasing the gap
between target and actual inventory levels.

Therefore, to further test our model and—in particular—the
de-stocking hypothesis driving it, we perform additional experi-
ments to rule out alternative explanations. To do so, we repeat the
calibration procedure from Section 4.3 this time with a version of
the model where Eq. (17) is replaced by a constant Ĉ n. The
structure of the models and the operational parameters of the
alternative model remain the same as those of the original model.
In Fig. 4 we show the model outputs of these calibrated alternative
models; Tables 6 and 7 respectively show the calibrated behavioral
parameters and the fit statistics of the alternative models for each
supply chain.

With regard to the calibrated parameters of the alternative
model we, again, observe relatively large values for the supply line
adjustment times coupled with large confidence interval. This
suggests a significant under-estimation of the supply line, a result
that is consistent with behavioral theory and with the findings of
the original model. In particular, we find no significant difference
when testing the mean and median values of the supply line
adjustment times of both the original and alternative models.

When looking at the output of the alternative model, we see
that the alternative model adequately tracks the average, or long-
term, demand variations but fails to explain the magnitude of the

demand drops and their timing—we see that the output of the
alternative model is appreciably more stable than the original
one. If we compare the alternative model runs with the original
(de-stocking) model runs we can see that the end market sales drive
the long-term evolution of upstream sales, while the short term
bullwhip-like dynamics are dominated by shocks. This is confirmed by
an analysis of the fit statistics of the alternative model (presented in
Table 8). Not only does the original model exhibit lower RMSE and
larger R2 (two-sample t-tests for the means pr0:05, Wilcoxon rank-
sum test for the medians pr0:05, and pr0:1 respectively), but the
Theil statistics denote that the error presents in the alternative models
is more systematic than those of the original models.

Behaviorally, it is interesting to note that both the original and
alternative models seem to present a consistent picture. Especially
when comparing the median values of the calibrated adjustment
times, we see that the stock and forecasting adjustment times are
of a comparable magnitude, while the supply line adjustment times
are significantly larger. This implies that, in order to track medium to
long term demand changes, firms tend to smooth their orders.
Consequently, short term dynamics seem to stem from other sources
of adjustments such as changes in desired stock levels.

5. Conclusions and managerial insights

Behavioral dynamics in supply chains have been widely
researched. Initial studies by Forrester (1958) analyzed data at
the level of individual or series of companies. Following the work
by Lee et al. (1997a), extensive analytical work has been con-
ducted, and more recently, driven by the work by Sterman (1989)
and Croson and Donohue (2005), focus has been on laboratory
experimentation. On the empirical front, Cachon et al. (2007) do
not find conclusive evidence for the existence of the bullwhip
effect in aggregate empirical data. Chen and Lee (2012), through
analytical work, argue that it is the aggregation of the data that
plays an important role in hiding some of the effect, which is
observed at a firm level (Bray and Mendelson, 2012).

Fig. 4. Alternative model output vs. seasonally corrected sales data. (a) supply chain 1, (b) supply chain 2, (c) supply chain 3, and (d) supply chain 4.
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In this study, we use observations following the collapse of
Lehman Brothers in the Fall of 2008 to develop a hypothesis
regarding target level setting and investigate the explanatory
power of behavioral dynamics. Our study observes demand at
the level of an individual company, but takes into account the
hypothesized dynamic decision making behavior at meso-level.
With this, our study sets itself apart from previous studies, and not
only builds upon the lines of research discussed above, but also on
research in economics studying inventory cycles.

Our results show that the theoretical results of (among others)
Sterman (1989) and Croson and Donohue (2006) together with an

inventory shock, can explain a large part of the dynamic evolution
of demand observed upstream in the periods following the start of
the recent credit crisis. The endogenous replenishment process
drives the evolution of demand throughout the supply chain,
determined by structural characteristics of the supply chain
(following Forrester, 1958), and the hypothesized human behavior
(following Sterman, 1989). The empirical evidence presented
shows that slow reaction speeds, and an apparent underestima-
tion of the supply pipeline are prevalent at higher aggregation
levels, suggesting that they go beyond being a phenomenon of
individual decision-making biases. At this level, the supply line
underestimation seems to be caused not from an incorrect
estimation of target values, but as a combination of the inherent
reaction time of firms and a decision rule that eschews the
tracking of the supply line by instead steering on large amounts
of on-hand inventory. This finding calls for further study on the
ordering behavior of firms; if behavioral biases influence decision-
making at the echelon level, how can—and should—firms overcome
them?. Equally important: how do these behaviors change over time?

To increase the confidence in our de-stocking hypothesis in the
presence of limited data, we presented an alternative model
without the hypothesized de-stocking. Our results in four supply
chains show that the underlying behavior of both models is
consistent between them and with prior research, and that while
the exogenous demand at consumer level and endogenous order-
ing decisions in the supply chain drive the overall demand
evolution, short-term demand bullwhip-like dynamics are mainly
driven by the de-stocking response to the crisis.

For managers, our results have implications at both the
strategic and tactical levels of decision making. Tactically, for
managers it is much more important to keep track of consumer
demands, supported by an endogenous simulation of ordering
behaviors to make demand forecasts, rather than relying exclu-
sively on information obtained from one or two echelons down-
stream. These simulation-based forecasts can drive decisions on
plant openings and closures, staffing decisions, and aggregate
inventory strategies. Additionally, our results highlight the impor-
tance of understanding the implications that policy changes

Table 6
Estimated behavioral parameters for the alternative model.

Echelon τðSÞ 95% CI τðSLÞ 95% CI τðFÞ 95% CI

Supply chain 1
1.1 1.00 1.00 1.27 5.80 5.69 7.47 1.00 1.00 2.73
1.2 35.51 34.08 37.45 134,441.23 18396.22 1 4779.57 4121.37 5923.29
2 11.23 7.44 22.01 187,103.83 3.72 1 7.49 4.70 12.19
3 9.67 6.82 15.90 59,794.30 3.41 1 7.38 3.92 13.87
4 10.00 1.00 1 100.00 0.50 1 6.03 1.00 3427.92

Supply chain 2
1.1 1.98 1.63 2.62 1 3.02 1 3.92 1.57 9.77
1.2 21.03 1.00 1 1666.67 1.00 1 47.00 1.00 1
1.3 49.68 28.39 96.79 1 1.00 1 84.65 38.60 343.64
2.1 1.00 1.00 3.48 0.50 1.00 0.88 2.86 1.20 5.85
3 11.76 7.51 18.35 10.00 1.00 1 10.63 6.75 17.60
4 3.04 1.29 6.46 1.00 1.00 1 13.69 5.26 45.40
5 10.00 1.14 1 4.31 1.00 1 10.00 1.00 174.73

Supply chain 3
1 2.32 2.27 2.46 139.41 35.45 1 1.00 1.00 4.17
2 19.18 13.44 30.20 1 6.76 1 15.89 10.33 26.46
3 18.07 13.14 26.79 1 22.45 1 16.05 10.38 26.93
4 1.01 1.00 1.40 4.25 1.26 6.87 1.00 1.00 2.99
5 10.00 1.00 1 60.25 1.00 1 10.00 1.00 1

Supply chain 4
1 19.98 14.20 28.41 1 12.74 1 2.52 1.00 6.18
2 17.75 14.61 21.75 1 19.95 1 9.95 6.54 13.89
3 18.23 14.68 22.88 1 19.31 1 10.75 7.10 15.09
4 14.52 1.00 1 18.59 1.00 1 5.22 1.00 1

Table 7
Alternative model fit statistics.

Model RMSE (%) R2 Um Us Uc

Supply chain 1 7.87 0.16 0.245 0.389 0.366
Supply chain 2 12.02 0.43 0.200 0.036 0.764
Supply chain 3 10.93 0.65 0.027 0.193 0.780
Supply chain 4 12.86 0.70 0.005 0.015 0.980

Table 8
Summary statistics for original and alternative models.

Variable Mean St. dev 1st Quartile Median 3rd Quartile

Original model
τðSÞ 36.71 115.71 8.63 10.00 13.70
τðSLÞ 84,630.55 258,287.00 13.54 60.25 18,871.62
τðFÞ 146.92 386.95 6.25 10.00 16.15
RMSE 6.95 2.21 5.28 6.55 8.63
R2 0.78 0.12 0.71 0.83 0.84

Alternative model
τðSÞ 13.67 12.00 3.04 11.23 18.23
τðSLÞ 29,777.61 59,143.05 5.80 80.13 35,056.11
τðFÞ 240.32 1040.25 3.92 9.95 13.69
RMSE 10.92 2.18 9.40 11.48 12.44
R2 0.49 0.25 0.30 0.54 0.68

M. Udenio et al. / Int. J. Production Economics 160 (2015) 34–4644



can bring into a supply chain. It is well known that aggregate
inventory levels can serve as an additional way to achieve liquidity
targets, however, limited research exists on the implications of
such decisions on the stability of the entire supply chain. Strate-
gically, we show that the structure of the supply chain impacts the
clockspeed at which the supply chain operates. In this sense, we
provide a formal model that can be used (a) to analyze the effects
of structural and policy changes in the supply chain, and (b) to
potentially become a decision-making tool in which endogenous
behavioral changes form the basis of scenario-based forecasting. In
this sense, our findings highlight the prospective value of informa-
tion sharing. In cases such as the period studied in this paper, and
consistent with experimental research (Croson and Donohue,
2006), knowledge about the underlying source of the observed
demand dynamics (i.e. distinguishing between ‘actual’ demand
drops and inventory adjustments) is crucial so as to adopt the
correct response strategy.

There are limitations and opportunities for further research.
First, we used a single time series of upstream sales per echelon
model, which hinders our ability to perform partial model calibra-
tion and dissociate the de-stocking decisions according to the
supply chain stages. To overcome this we performed the model
calibration during a time-frame where supply chain decision-
making was particularly synchronized. Further studies with
detailed data at every stage of the supply chain can offer more
robust statistical tests of firm-level behavior as well as bring
insights regarding the influence of firm characteristics (in parti-
cular the distance from the end market) in the ordering and de-
stocking behavior.

Second, the use of the term bullwhip effect to describe the
phenomena investigated in this paper is consistent with the
broader use of the term (De Kok, 2012; Disney et al., 2013; Lee
et al., 2014). However, it can be argued that the term bullwhip
should be restricted to situations where classical assumptions
(such as constant behavior and constant parameters) hold.

Third, we make a series of implicit assumptions that may not
necessarily apply in other industries or time periods. Our models
assume independent echelons with no information sharing among
them, with constant market share (nor pricing changes), a stable
supply chain structure, no capacity limitations, and aggregate data.
We expect these assumptions to be reasonable within the crisis
time-frame, but further modeling efforts are necessary to test
whether they can be applied during stable times, where the
demand dynamics are more subtle.

Such studies, combining fine grained data from multiple
echelons in a supply chain, have the potential to take us closer
to the objective, both empirical and experimental, of testing
whether endogenous mechanisms that we know govern the
individual behavior (such as the underestimation of the supply
line, and de-stocking and hoarding behaviors) can be consistently
found at the aggregate level.

Appendix

In this appendix, we explore details of the model for one of the
supply chains under study. In the next section, we introduce the
supply chain in greater detail. Then, we analyze the model output
for all the intermediate echelons in the supply chain.

Appendix A. Supply chain 3

This supply chain is defined by geographic market boundaries.
The unit of upstream aggregation is as defined by the business unit
“the production of ethylene propylene diene monomer (EPDM)
rubber for the supply of the European automotive market”.
The steps in this supply chain are:

Echelon
1

OEM. Auto terminal.

Echelon
2

Module assembler. Whereupon products are assembled
into modules to be used in the auto terminal.

Echelon
3

Converter. Where the rubber product is modified
(through for example slitting, cutting, and extrusion) to
form a finished product.

Echelon
4

Compounder. Where the raw materials are mixed with
other ingredients to produce usable rubber compounds.

Echelon
5

EPDM producer, our research site.

Appendix B. Model output for intermediate echelons

Fig. 5 shows the demand and inventory dynamics for each
subsequent echelon in supply chain 3. We see, as expected, an
increase in order variability the further upstream we go in the
supply chain. Additionally, the figure illustrates the impact of the
delay of information transmission; the timing of the different
turning points varies across the supply chain. Note that the
assumption of an infinite capacity supplier to echelon 5 results
in more responsive inventory dynamics for this echelon—this,
however, does not affect the dynamics of its demand.
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